κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$: From Spin Liquid to Fermi Liquid

Martin Dressel1, Andrej Pustogow1, R. Rösslhuber1, Björn Miksch1, Yohei Saito1, Vladimir Dobrosavljević2, Simone Fratini3

11. Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany, e-mail: dressel@pi1.physik.uni-stuttgart.de
2National High Magnetic Field Laboratory and Florida State University, Tallahassee, USA
3Institut Néel – CNRS and Université Grenoble Alpes, Grenoble, France

κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ is among the best studied correlated electron systems and a model compound in many regards [1]. The triangular arrangement of dimers causes strong frustration with no magnetic order despite the sizeable interactions. Our broad-band ultra-low-temperature ESR spectroscopy enabled us to unambiguously reveal a rapid drop of the spin susceptibility at the enigmatic 6 K anomaly. This opening of a spin gap, accompanied by structural modifications, evidences a valence-bond-solid ground state. We identify an impurity contribution to the ESR response that becomes dominant when the intrinsic spins form singlets [2].

When the electronic bandwidth is tuned either by external pressure or by chemical substitution, κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ crosses the first-order insulator-metal transition below $T_{\text{crit}} \approx 20$ K, where metallic and insulating regions coexist spatially, causing a divergency in the dielectric permittivity with $\varepsilon_1 \approx 10^5$ and more [3].

On the metallic side, the low-energy properties can be understood in terms of long-lived Landau quasiparticles with all complex interactions included in Fermi-liquid parameters, such as the effective mass m^* and scattering rate $1/\tau$. Here we investigate the spectral and temperature-dependent complex electrodynamic response $\sigma_1(\omega,T) + i\sigma_2(\omega,T)$ as the effective correlations U/W are varied by chemical tuning. We reveal a persistent Fermi-liquid behavior with T^2 and ω^2 dependences of the optical scattering rate $1/\tau$. The strong increase of the resistivity beyond the Ioffe-Regel-Mott limit $\rho \gg \rho_{\text{IRM}}$ is accompanied by a displaced Drude peak in $\sigma_1(\omega)$. Our results, supported by a theoretical model for the optical response, demonstrate the emergence of a bad metal from resilient quasiparticles that are subject to dynamical localization and dissolve near the Mott transition [4].

References

Samples were provided by A. Bardin, R. Hübner, K. Kanoda, A. Kawamoto, and J.A. Schlueter.