Short- and long-range charge correlations and their photoinduced dynamics in charge-ordered organic ferroelectrics (TMTTF)$_2$X

Hirotake Itoh1, Yohei Kawakami1, Kaoru Yamamoto2, Martin Dressel3, and Shinichiro Iwai1

1Department of Physics, Tohoku University, Sendai 980-8578, Japan, e-mail: hiroitoh@tohoku.ac.jp
2Department of Applied Physics, Okayama University of Science, Okayama 700-0005, Japan
31. Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany

Short-range electronic correlations have been intensively investigated for their contribution to exotic condensed matter phenomena such as high-temperature superconductivity, colossal magnetoresistance, etc [1]. Particularly intriguing is their nontrivial dynamics seen during photoinduced phase transitions [2], illustrating a promising pathway to unprecedented nonequilibrium states which might be thermodynamically inaccessible. We report herein ultrafast photoresponses of strongly-correlated charges in quarter-filled organic conductors (TMTTF)$_2$X (TMTTF: tetramethyl-tetrathiafulvalene; X: anion) [3], which exhibit prototypical electronic ferroelectricity [4].

By employing terahertz (THz) emission and absorption spectroscopy, we were able to disentangle long-range charge order (CO), forming ferroelectric domains with a hundreds-micrometer scale [Fig. a], and short-range charge correlations that activate the absorption at ~65 cm$^{-1}$ well above CO transition temperature T_{CO} [Fig. b] [5]. For X = PF$_6$ and AsF$_6$, photoexcitation triggers ultrafast (< 0.1 picosecond) enhancement of short-range charge correlations in contrast to melting of long-range CO [Fig. c], the latter of which is also seen in other electronic ferroelectrics [6].

For tetrahedral anion cases (X = ReO$_4$ and BF$_4$), domain walls separating antiparallel polarization domains were found to be controllable by anion order, and to host, upon photoexcitation, real-time oscillation of THz emission amplitude with a period of a few picoseconds. The key factor for these ultrafast dynamics is the photoexcitation in the vicinity of phase boundaries or charge fluctuations therein.

Reference