Probing lattice effects in κ-(BEDT-TTF)$_2$X spin-liquid-candidate systems

M. Lang1, S. Hartmann1, E. Gati1,2, R. S. Manna1,3, Y. Agarmani1, Y. Saito1, Y. Yoshida4, G. Saito5, M. Matsuura6, T. Sasaki1, J. Müller1, O. Stockert2, N. Yoneyama8, M. Naka9, B. Wolf1, U. Tutsch1, H. Schubert1 and J. A. Schlueter10

1Goethe University Frankfurt, Germany, e-mail: michael.lang@physik.uni-frankfurt.de
2Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany
3Department of Physics, IIT Tirupati, India
4Division of Chemistry, Graduate School of Science, Kyoto University, Japan
5Toyota Physical and Chemical Research Institute, Nagakute, Japan
6Neutron Science and Technology Center, Tokai, Ibaraki, Japan
7Institute for Materials Research, Tohoku University, Sendai, Japan
8Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
9Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
10Division of Materials Research, National Science Foundation, Arlington, USA

κ-phase (BEDT-TTF)$_2$X salts, characterized by a layered structure where (BEDT-TTF)$_2$$_{1+}$ dimers form a distorted triangular lattice, show a variety of intriguing phase transitions and ground states including the Mott metal-insulator transition, quantum disordered potentially quantum-spin-liquid (QSL) phases, local moment antiferromagnetic and charge-ordered states as well as superconductivity. Important parameters, determining the actual ground state, are the relative strength of onsite-, intersite- and intradimer Coulomb interactions, the degree of frustration and the coupling of the electronic degrees of freedom to the lattice.

Here we will address the QSL-candidate systems κ-(BEDT-TTF)$_2$X with X = Cu$_2$(CN)$_3$ and Ag$_2$(CN)$_3$, both of which reveal a high degree of frustration and lack long-range magnetic order down to mK temperatures. In particular, we will address the mysterious 6 K anomaly for the X = Cu$_2$(CN)$_3$ salt where thermal expansion measurements [1,2] reveal clear evidence for a second-order phase transition with strong involvement of the lattice, which was recently assigned to the formation of valence-bond singlets [3]. These observations will be complemented by recent results of an inelastic-neutron-scattering study on deuterated specimens of X = Cu$_2$(CN)$_3$ [4], probing the same intra-dimer breathing/shearing mode where pronounced renormalization effects accompanying ordering phenomena in the spin- and charge-channels, were revealed for the dimer-Mott insulator X = Cu[N(CN)$_2$]Cl [5]. In contrast, for the X = Ag$_2$(CN)$_3$ system, the thermal expansion lacks any indication for a phase transition down to 1.5 K, consistent with a QSL ground state. For this system broad and strongly anisotropic anomalies are observed around 20 K which can be assigned to the strongly correlated π-electron system on a triangular lattice [6,7].

References