Probing lattice effects in κ-(BEDT-TTF)₂X spin-liquid-candidate systems

<u>M. Lang</u>,¹ S. Hartmann¹, E. Gati^{1,2}, R. S. Manna^{1,3}, Y. Agarmani¹, Y. Saito¹, Y. Yoshida⁴, G. Saito⁵, M. Matsuura⁶, T. Sasaki⁷, J. Müller¹, O. Stockert², N. Yoneyama⁸, M. Naka⁹, B. Wolf¹, U.Tutsch¹, H. Schubert¹ and J. A. Schlueter¹⁰

¹Goethe University Frankfurt, Germany, e-mail: michael.lang@physik.uni-frankfurt.de ²Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany

³Department of Physics, IIT Tirupati, India

⁴Division of Chemistry, Graduate School of Science, Kyoto University, Japan

⁵*Toyota Physical and Chemical Research Institute, Nagakute, Japan*

⁶Neutron Science and Technology Center, Tokai, Ibaraki, Japan

⁷Institute for Materials Research, Tohoku University, Sendai, Japan

⁸Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan

⁹Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan

¹⁰Division of Materials Research, National Science Foundation, Arlington, USA

 κ -phase (BEDT-TTF)₂X salts, characterized by a layered structure where (BEDT-TTF)₂¹⁺ dimers form a distorted triangular lattice, show a variety of intriguing phase transitions and ground states including the Mott metal-insulator transition, quantum disordered potentially quantum-spin-liquid (QSL) phases, local moment antiferromagnetic and charge-ordered states as well as superconductivity. Important parameters, determining the actual ground state, are the relative strength of onsite-, intersite- and intradimer Coulomb interactions, the degree of frustration and the coupling of the electronic degrees of freedom to the lattice.

Here we will address the QSL-candidate systems κ -(BEDT-TTF)₂X with X = Cu₂(CN)₃ and Ag₂(CN)₃, both of which reveal a high degree of frustration and lack long-range magnetic order down to mK temperatures. In particular, we will address the mysterious 6 K anomaly for the X = Cu₂(CN)₃ salt where thermal expansion measurements [1,2] reveal clear evidence for a second-order phase transition with strong involvement of the lattice, which was recently assigned to the formation of valence-bond singlets [3]. These observations will be complemented by recent results of an inelastic-neutron-scattering study on deuterated specimens of X = Cu₂(CN)₃ [4], probing the same intra-dimer breathing/shearing mode where pronounced renormalization effects accompanying ordering phenomena in the spin- and charge-channels, were revealed for the dimer-Mott insulator X = Cu[N(CN)₂]Cl [5]. In contrast, for the X = Ag₂(CN)₃ system, the thermal expansion lacks any indication for a phase transition down to 1.5 K, consistent with a QSL ground state. For this system broad and strongly anisotropic anomalies are observed around 20 K which can be assigned to the strongly correlated π -electron system on a triangular lattice [6,7].

References

- [1] R. S. Manna et al., Phys. Rev. Lett. 104, 016403 (2010)
- [2] R. S. Manna et al., Crystals 8, 87 (2018)
- [3] B. Miksch et al., Science 372, 276 (2021)
- [4] M. Matsuura *et al.*, in preparation
- [5] M. Matsuura et al., Phys. Rev. Lett. 123, 027601 (2019)
- [6] S. Hartmann et al., Phys. Status Solidi B 256, 1800640 (2019)
- [7] J. Kokalj and R. H. McKenzie, Phys. Rev. B 91, 205121 (2015)