Molecular Machine Acts as Waterwheel in Artificial Water Channel and Isotope Effect on Water Adsorption Kinetics

<u>Simin Li</u>,¹ Kiyonori Takahashi,^{1,2} Rui-Kang Huang,^{1,2} Jiabing Wu,² Xin Zheng,³ Chen Xue,^{1,2} Shin-ichiro Noro,^{2,3} Ichiro Hisaki,⁴ Kenta Kokado,⁵ Takayoshi Nakamura^{1,2}

¹ Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Japan
² Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
³ Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
⁴ Graduate School of Engineering Science, Osaka University, Osaka, Japan

⁵Toyota Technological Institute, Nagoya, Japan

We report a compound with the formula of $(4-ApyH^+)(DB[24]crown-8)[Ni(dmit)_2]^-(H_2O)$ (1•H₂O) (where 4-ApyH⁺ is 4-aminopyridinium⁺, DB[24]crown-8 is dibenzo[24]crown-8, and dmit²⁻ is 2-thioxo-1,3-dithiole-4,5-dithiolate). Crystal 1•H₂O keeps the single crystallinity after losing 0.7 molecule of water per unit by heating at 100 °C for 2 h, affording 1.0.3H₂O. When exposing 1.0.3H₂O in air for 12 h, 1.H₂O is recovered. In the reversible H₂O ad/desorption process, the overall structural framework remains unchanged except for disorders in H₂O position, 4-ApyH⁺ rotation and DB[24]crown-8 deformation (Fig 1). In 1•H₂O, both H₂O and DB[24]crown-8 are ordered and the two configurations of DB[24]crown-8 (vellow and green) are hydrogen-bonded with H₂O and with amino groups of 4-ApyH⁺, respectively. While in 1.0.3H₂O, 4-ApyH⁺ cations are disordered over two sites with each 50% occupancy (blue and magenta). Meanwhile, the remaining 0.3 molecule of H₂O are also disordered in two positions and DB[24]crown-8 becomes identical and takes similar conformation with that of green one in 1•H₂O. The possible H₂O adsorption mechanism can be regarded as a series of waterwheels at the molecular size. During the desorption process, with the loss of H₂O, crystalline space for molecular rotation is generated, allowing in-plane molecular rotation of 4-ApyH⁺. As a result, 4-ApyH⁺ molecules invert 180 degree and flexible DB[24]crown-8 columns shrink. Upon the rehydration process, a H₂O molecule coordinated to a pyridinium N⁺ site through N-H⁺•••O hydrogen bond. With the 4-ApyH⁺ rotation, the H₂O molecules move to the next position, which can form hydrogen bond with the next 4-ApyH⁺. The rotation of 4-ApyH⁺ is possible given that H₂O molecules are not occupied at the next site. Finally, one of the DB[24]crown-8 expand from green to yellow

conformation and 1•H₂O with fully occupied with H₂O molecule at yellow DB[24]crown-8 has ordered structure. This step-by-step structural transformation in the adsorption process is in good agreement with the H₂O adsorption isotherm at 298 K. Kinetic adsorption measurements show great isotopic effect in H₂O /D₂O adsorption rates. The stronger antiferromagnetic interaction in 1•0.3H₂O corresponds to closer molecular contacts due to slight shrinkage of the supramolecular column upon desorption of H₂O molecule.

Fig. 1. Supramolecular cation structures in the reversible H₂O ad/desorption process.