## Equilateral and symmetry breaking rare-earth triangles in sandwich-type polyoxometalates regulated by simple organic cations

Dongfang Wu<sup>1</sup>, Kiyonori Takahashi<sup>1,2</sup>, Ruikang Huang<sup>1,2</sup>, Chen Xue<sup>1,2</sup> and Takayoshi Nakamura<sup>1,2</sup>

<sup>1</sup>Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan, email:dongfangwu@ees.hokudai.ac.jp <sup>2</sup>Research Institute of Electronic Science, Hokkaido University, Sapporo, Japan

The sandwich-type polyoxometalates (POMs) formed by sandwiching a carbonate-bridged lanthanide equilateral triangle between two lacunary Keggin POMs have a possibility to give interesting magnetic properties, such as spin frustration<sup>[1]</sup>, toroidal magnetic moment<sup>[2]</sup> and single molecule magnets<sup>[2]</sup>. In this work, seven sandwich-type POMs were obtained with organic cations of distinct symmetry: (CH<sub>3</sub>)NH<sub>3</sub><sup>+</sup><sub>10</sub>Na[(PW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>(H<sub>2</sub>ORE)<sub>3</sub>CO<sub>3</sub>] (**RE-MA**; RE = Tb, Dy, Er and Y; MA = methylammonium),  $(CH_3)_2NH_2^{+1}[(PW_9O_{34})_2(H_2OTb)_3CO_3]$ (**Tb-DMA**, DMA = dimethylammonium),  $(CH_3)_3NH_8^+Na_3[(PW_9O_{34})_2(H_2OTb)_3CO_3]$  (**Tb-TriMA**, TriMA = trimethylammonium), and  $(CH_3)_4 N_6^+ Na_5[(PW_9O_{34})_2(H_2OTb)_3CO_3]$  (**Tb**-**TMA**, TMA = tetramethylammonium). Two highly centrosymmetric space groups of  $P6_3/m$ and  $R\bar{3}m$  in crystal **RE-MA** and **Tb-TMA**, and two polar space groups of  $Pna2_1$  and  $Cmc2_1$ in crystal **Tb-DMA** and **Tb-TriMA**, were achieved, respectively, by adjusting the symmetry organic cations. MA<sup>+</sup>( $C_{\alpha\nu}$ ), DMA<sup>+</sup>( $C_{2\nu}$ ), TriMA<sup>+</sup>( $C_{3\nu}$ ) and TMA<sup>+</sup>( $T_d$ ) cations possessing 3, 2, 1 and 0 hydrogen-bond sites are exploited, in which only MA<sup>+</sup> cations constructed hydrogenbond network of  $C_3$  symmetry with sandwich-POM anions and water molecules utilizing three hydrogen-bonding sites at  $-NH_3^+$  moiety. Especially, hydrogen-bonding supramolecular units {(MeNH<sub>3</sub><sup>+</sup>)<sub>m</sub>(H<sub>2</sub>O)<sub>n</sub>} having  $C_{3h}$  symmetry and compatible size with sandwich POM anions are constructed in crystal **RE-MA** as shown in Fig. 1. An ideal sandwich POM anion should display  $D_{3h}$  symmetry, in which the RE<sub>3</sub>-triangle is equilateral having  $C_3$  axis perpendicular to the plane. Successfully, equilateral RE<sub>3</sub>-triangle is achieved in crystal **RE**-MA and Tb-TMA under the influence of high symmetric hydrogen-bonding supramolecular cation  $(C_{3h})$  and TMA<sup>+</sup> cation  $(T_d)$ . Magnetic measurements indicate that **RE-MA**, **Tb-DMA**, Tb-TriMA and Tb-TMA exhibit field-induced single molecular magnetic behaviors.



Fig. 1. The crystal structure of  $(CH_3)NH_3^+{}_{10}Na[(PW_9O_{34})_2(H_2OTb)_3CO_3]$ (**Tb-MA**).

## References

- [1] L. Balents, *Nature* **464.**, 199 (2010).
- [2] J. Tang et al., Angew. Chem. Int. Ed 45., 1729 (2006).