Disorder Effects on Unconventional Superconductivity in (TMTSF)₂ClO₄

<u>S. Yonezawa</u>¹, C. A. Marrache-Kikuchi², A. Sedeki³, P. Auban-Senzier⁴, C. Bourbonnais⁵, D. Jérome⁴

¹ Department of Physics, Kyoto University, Kyoto, Japan; e-mail: yonezawa@scphys.kyoto-u.ac.jp ²CNRS, IJCLab, Paris-Saclay University, Orsay, France ³Université Dr Tahar Moulay Saida, Saida, Algeria ⁴CNRS, Laboratory of Solid-State Physics, Paris-Saclay University, Orsay, France ⁵Département de physique,Université de Sherbrooke, Sherbrooke, Québec, Canada

Since the first organic superconductor $(TMTSF)_2X$ with the superconducting critical temperature of around 1.2 K was discovered, various studies have been performed to understand its unconventional superconducting properties and its relation to the neighboring spin-density wave magnetic-ordered state.

Among members of this $(TMTSF)_2X$ family, $(TMTSF)_2ClO_4$ is particularly interesting, This is the only member that exhibits ambient-pressure superconductivity, making many experimental probes easily accessible. Moreover, $(TMTSF)_2ClO_4$ has a unique feature that the degree of disorder can be simply tuned by changing the cooling rate across the anion-ordering temperature ($T_{AO} \sim 24$ K). With very fast cooling, the ClO₄ anions remain disordered and this disorder suppresses superconductivity. This effect, which has been known for many years, provides a unique opportunity to study disorder effects on unconventional superconductivity using one identical sample and with reversible control of the amount of disorder.

We are investigating the evolution of superconductivity as a function of the anion randomness in detail. Simultaneous measurements of electrical resistivity and magnetic susceptibility of single crystal samples revealed interesting crossover from disorder-controlled *d*-wave-like superconductivity for small disorder to granular superconductivity for higher disorder [1]. Specific-heat measurements under various disorder allows us to investigate the residual density of states as a function of disorder. We found that the residual term evolves as predicted by theories for *d*-wave superconductivity [2]. In addition, the evolution of the normal-state resistivity has been studied and we found that the non-Fermi-liquid-like *T*-linear resistivity coefficient is gradually suppressed, in agreement with a theory taking into account the finite-lifetime effect and phase coexistence [3].

In this talk, we explain disorder effects on superconducting and normal-state properties (TMTSF)₂ClO₄ and discuss the origin of these observations.

References

[1] S. Yonezawa, C. A. Marrache-Kikuchi, K. Bechgaard, D. Jérome, Phys. Rev. B 97, 014521 (2018).

[2] In preparation.

[3] A. Sedeki, P. Auban-Senzier, S. Yonezawa, C. Bourbonnais, D. Jérome, Phys. Rev. B 98, 115111 (2018).