High-density carrier doping into single-crystal C₈-DNBDT under compressive uni-axial strain

<u>Tomoki Furukawa</u>¹, Naotaka Kasuya^{1,2}, Toshihiro Okamoto^{1,2}, Hideaki Takayanagi¹, Shun Watanabe^{1,2}, and Jun Takeya^{1,2,3}

¹Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan, e-mail: 8453064863@edu.k.u-tokyo.ac.jp ²CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan ³MANA, National Institute for Materials Science, Tsukuba 305-0047, Japan

Organic semiconductors (OSCs) are molecular solids in which π -conjugated molecules are weakly assembled *via* van der Waals interactions. With the development of novel organic semiconductor materials and the improvement of solution processing approaches for the growth of high-crystalline organic thin films, carrier mobility of single-crystal OSCs has exceeded 10 cm² · V · s⁻¹, and OSCs have attracted much attention as the key materials for next-generation organic-besed electronic devices. The electrical conduction of OSCs was conventionally considered to be dominated by hopping transport in which carriers are localized in a single molecule, but for small molecule single crystals, it has been revealed that the wave function of carriers is delocalized and coherent (or band-like) transport has been observed.

Recently, strongly correlated two-dimensional hole gas formation and insulator-metal transition on the surface of small molecule single-crystal OSCs have been observed by band-filling control using ionic liquids based electric double layer transistor (EDLT) [1]. In addition to this, giant piezoresistive effects also have been observed in small molecule single-crystal OSCs by compressing the crystal lattice uniaxially simply *via* bending the flexible devices [2].

In this study, temperature dependence of sheet resistance was measured under compressive uni-axial strain into highly doped single crystal C_8 -DNBDT, and an apparent insulator-metal transition was observed.

Fig. 1. (a) Chemical structure of C_8 -DNBDT, (b) Schematic diagram of EDLT, (c) Schematic diagram of how uniaxial strain is applied, (d) The temperature dependence of sheet resistance R_{sheet} .

References

^[1] N. Kasuya, J. Takeya et al., Nat. Mater., 20, 1401 (2021)

^[2] T. Kubo, J. Takeya et al., Nat. Commun., 7, 11156 (2016).