
Chiral Conducting Me-EDT-TTF and Et-EDT-TTF-Based Radical Cation Salts with Iodine Anions

<u>Goncalo Lopes</u>,¹ Nabil Mroweh,³ Isabel C. Santos,¹ Vasco da Gama,¹ José António Paixão,² Sandra Rabaça,¹ Narcis Avarvari,³ Manuel Almeida¹

 ¹ C²TN and DECN, IST, Universidade de Lisboa, E.N. 10, 2695-066 Bobadela LRS, Portugal, (e mail: goncaloblopes@ctn.tecnico.ulisboa.pt)
² CFisUC, Departamento de Física, Universidade de Coimbra, Coimbra, Portugal
³ MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers, 2 bd Lavoisier, CEDEX, 49045 Angers, France.

CNB-EDT-TTF^[1] donor was recently found to self-assemble in a novel type of two dimensional double layered conducting structures with the composition of (CNB-EDT-TTF)₄A with a variety of anions A, either discrete or of polymeric nature.^[2-4] The physical properties of the double layer conductors have attracted a lot of interest. In this context the possible introduction of structural modifications in this donor, capable of providing chirality in the bilayer conducting structure, remains a quite appealing challenge.

Aiming at preparing chiral bilayer conductors, two chiral derivatives of the CNB-EDT-TTF donor (CNB-EDT-TTF-DMe and CNB-EDT-TTF-DEt) were synthesized and the first salts of these donors were obtained. The structure and properties of the iodine salts of these donors formulated as $[(CNB-EDT-TTF-DMe)I_3I_2]$ and $[(CNB-EDT-TTF-DEt)I_5]$ are presented and discussed in detail.

Figure 1 – (i) CNB-EDT-TTF donor and Methyl and ethyl substituted CNB-EDT-TTF-DR donors ;(ii) [(CNB-EDT-TTF-DEt)Is]; (iii) [(CNB-EDT-TTF-DMe)IsI2]

References

- [1] S. Oliveira et al. Beilstein J. Org. Chem. 951-956, 11 (2015).
- [2] S. Oliveira et al., Inorg. Chem. 6677-6679, 54 (2015).
- [3] S. Rabaça et al. CrystEngComm 1145-1155, 24 (2022)
- [4] G. Lopes et al. submitted to CrystEngComm