Evidence for Field-Induced Excitonic Correlations and Topological Insulating state in α-(BEDT-TTF)₂I₃ under Pressure

<u>Michihiro Hirata¹</u>, Tomotaka Taniguchi², Daigo Ohki⁴, Hadrien Mayaffre³, Kazuya Miyagawa², Masafumi Tamura⁵, Steffen Krämer³, Mladen Horvatić³, Claude Berthier³, Takehiro Tani⁴, Akito Kobayashi⁴, and Kazushi Kanoda²

¹Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA, e-mail: mhirata@lanl.gov ²University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan ³LNCMI-CNRS (UPR 3228), EMFL, Université Grenoble Alpes, UPS and INSA, Toulouse, BP 166, 38042 Grenoble, France ⁴Nagoya University, Chikusa-ku, Nagoya 462-8602, Japan ⁵Tokyo University of Science, Noda, Chiba 278-8510, Japan

The search for emergent phenomena linked to electronic correlations and topology is at the forefront of modern condensed-matter physics. Our NMR study reveals key insights on the magnetic correlations of the quasi-2D massless Dirac fermions in the organic conductor α -(BEDT-TTF)₂I₃ under NMR shift and relaxation-rate data combined with Korringa's model show that a quasi-relativistic zeroth Landau level appears at the Fermi energy, in line with earlier transport and calorimetric. reporting emergent quantum limit at low temperature (T) [1-3]. Second, we detect a growing spin polarization and gap opening upon cooling, consistent with the recently discovered signatures of topological counter-propagating edge states tied to a spin-polarized zeroth level [4] - characteristic features of a so-called zero-Chern-number ($\nu = 0$) quantum Hall (QH) topological insulating state [5]. Third, at lower T, an anomalous B-tunable increase emerges in the NMR relaxation rate $1/T_1T$, which is shown by numerical calculations to correspond to the

Fig. 1. *T-B* phase diagram for out-of-plane field in pressurized α -(BEDT-TTF)₂I₃. Characteristic scales – T_{QL} : quantum limit, T_{spin} : spin-gap opening, and T_{upturn} : $1/T_1T$ upturn.

B-enhanced excitonic fluctuations growing prior to a condensation in the bulk of the topological insulator [6]. Our results suggest that excitonic dynamics may play more substantial roles than expected in generic Dirac-Weyl materials, and can coexist with QH ferromagnetism, a hypothesis widely discussed theoretically [7] but yet to be confirmed experimentally.

References

- [1] S. Sugawara et al., J. Phys. Soc. Jpn. 79, 113704 (2010)
- [2] N. Tajima et al., *Phys. Rev. B* 82, 121420 (2010)
- [3] T. Konoike et al., J. Phys. Soc. Jpn. 81, 043601 (2012)
- [4] T. Osada, J. Phys. Soc. Jpn. 84, 053704 (2015); M. Sato et al., arXiv 1909.07006 (2019)
- [5] M. Kharitonov et al., *Phys. Rev. B* 94, 035146 (2016)
- [6] D. V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001)
- [7] E. V. Gorbar et al., Phys. Scr. T146, 014018 (2012); B. Roy and J. D. Sau, Phys. Rev. B 92, 125141 (2015)