Crystal structure and physical properties of a new organic conductor κ ''-(ET)₂Cu[N(CN)₂]Br

Soichiro Yasaka, Mitsuhiko Maesato¹, Yukihiro Yoshida¹, and Hiroshi Kitagawa¹

¹ Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, e-mail: yasaka1119@ssc.kuchem.kyoto-u.ac.jp

The organic conductors κ -(ET)₂X have attracted much attention because of their striking physical properties such as superconductivity and quantum spin liquid, where ET denotes bis(ethylenedithio)-tetrathiafulvalene. They are strongly correlated electron systems and possess some similarities to high T_c cuprates such as 2D conducting layers and superconductivity in the vicinity of Mott insulating phase.

Among them, κ -(ET)₂Cu[N(CN)₂]Br (κ -Br) is an ambient-pressure superconductor with a relatively high $T_c = 11.6$ K in close proximity to Mott insulating state[1], whereas its derivative κ -(ET)₂Cu[N(CN)₂]Cl (κ -Cl) is an antiferromagnet and shows a Mott and a superconducting transition with $T_c = 12.8$ K under a mild pressure of 0.3 kbar[2]. It has been considered that the electron correlation is a key factor dominating the ground states of κ -(ET)₂X [3].

Recently, we found a new polymorph of κ -Br, κ'' -(ET)₂Cu[N(CN)₂]Br (κ'' -Br), which was obtained as a by-product of κ -Br. The κ'' -Br salt has a monoclinic crystal structure composed of conducting ET layers and insulating anion layers alternating along a axis (Fig. 1). The molecular long axis of ET is nearly collinear in the monoclinic κ'' -Br, while there are alternating two kinds of ET layers with different orientation in the orthorhombic κ -Br. The κ -type arrangement of ET molecules in κ'' -Br is similar to that of κ -Br. In the polymeric zig-zag chains of anions, the dicyanamide groups are disordered in κ'' -Br, while they are ordered in κ -Br.

We also report the band structure and physical properties of κ'' -Br and discuss its electronic states.

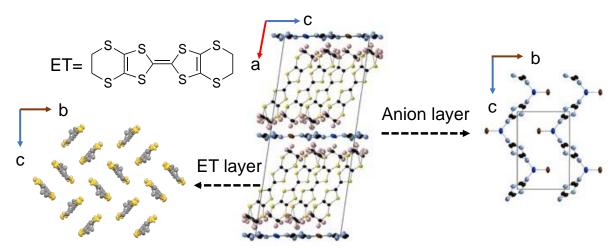


Fig. 1. Crystal structure of κ'' -(ET)₂Cu[N(CN)₂]Br.

References

- [1] A. M. Kini et al., Inorg, Chem. 29, 2555-2557 (1990).
- [2] Jack M. Williams et al., Inorg, Chem. 29, 3272-3274 (1990).
- [3] K. Kanoda, J. Phys. Soc. Jpn. 75, 051007 (2006).