Contrasting Scenarios for Organic Spin Liquids

<u>Stephen M. Winter</u>,¹ Kira Riedl,² Elena Gati,^{3,4} David Zielke,³ Steffi Hartmann,³ Oleg M. Vyaselev,⁵ Nataliya D. Kushch ,⁶ Harald O. Jeschke ,⁷ Michael Lang,³ Roser Valentí,² Mark V. Kartsovnik⁸

¹ Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, USA, e-mail: winters@wfu.edu

² Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany

³ Physikalisches Institut, Goethe-Universität Frankfurt, Max von Laue Str 1, 60438 Frankfurt am Main, Germany

⁴ Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany

⁵ Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia

⁶ Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia

 ⁷ Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
⁸ Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meissner-Strasse 8, Garching D-85748, Germany

The ultimate ground state of organic spin-liquid candidates, such as κ -(ET)₂Cu₂(CN)₃ has long remained elusive. While a variety of apparently conflicting experimental results have favored various scenarios over the years, a comprehensive view has yet to emerge. It has long been thought that conventional magnetic order is destabilized by strong ring-exchange, occasioned by proximity to the Mott transition. Such interactions are known to promote either chiral spin-liquid phases or unconventional spin-vortex order if sufficiently strong. On the one hand, this scenario is now supported by the recent observation of spin-vortex order in the related compound κ -(BETS)₂Mn[N(CN)₂]₃, which definitely confirms the importance of ringexchange [1]. On the other hand, there is mounting evidence for an important role of disorder in the low-temperature response [2]. Here, we contrast these scenarios in view of recent experimental results.

References

[1] Kira Riedl, Elena Gati, David Zielke, Steffi Hartmann, Oleg M. Vyaselev, Nataliya D. Kushch, Harald O. Jeschke, Michael Lang, Roser Valentí, Mark V. Kartsovnik, and Stephen M. Winter. *Phys. Rev. Lett.* **127-14**, 147204 (2021).

[2] Kira Riedl, Roser Valentí, and Stephen M. Winter. Nat. Commun. 10, 1-9 (2019).